Here is the algorithm to parse in RPN's manner:
for each char of the expression
decide if the char is part of an operand or of an operator
if the char is part of an operand,
append it to the list of operands
else if the char is part of an operator,
look up the operator
match it with supported operators
compare operator with the preceding operators
if this operator is prevalent,
store the operator in a stack
otherwise, unstack the preceding operator,
append the preceding operator to the list of operands
stack the new operator
end if
end if
end for
Wiki's article on RPN.
For example: an math expression: 9+8x5-20^3
list 1 (operand) | list 2 (operator)
9 |
9 | +
9 8 | +
9 8 | + x ( x has precedence over +, so just append x)
9 8 5 | + x
9 8 5 x | + - ( x has precedence over -, so remove x, append x to operand list, then append - to operator list)
9 8 5 x 20 | + -
9 8 5 x 20 | + - ^ (of course, ^ has precedence over -, just append ^ on operator list)
9 8 5 x 20 3 | + - ^
9 8 5 x 20 3 ^ | + - (now start from the tail, remove all elements from operator list and append then to the operand list one by one)
9 8 5 x 20 3 ^ - | +
9 8 5 x 20 3 ^ - + |
RPN parsing done!
Calculation starts from the left, push elements onto calc stack.
Whenever you get one operator, do the calculation immediately. push the result onto the stack.
Calculation stack | comment
9 |
9 8 5 x | 8 x 5 = 40
9 40 |
9 40 20 |
9 40 20 3 |
9 40 20 3 ^ | 20 ^ 3 = 8000
9 40 8000 |
9 40 8000 - | 40 - 8000 = -7960
9 -7960 |
9 -7960 + | 9 + (-7960) = -7951
-7951
done! so 9+8x5-20^3 = -7951
Problem UVa 288: Arithmetic Operations With Large Integers
I used BigInt library from shygypsy.com
Just modified the operator ^ to support "repeated squaring".
i.e.,
BigInt BigInt::operator^ (BigInt n){
BigInt result = 1;
BigInt base = *this;
while(n > 0) {
if(n % 2 == 1) {
result *= base;
}
base *= base;
n /= 2;
}
return result;
}
// operator precedence
// + - 2+3-4-5+4, use left -> right
// 2*3*4*5, use left->right
// 6^7^8^9, use right->left
bool precedence(int z1, int z2) {
if(z1 == -10) return true;
if(z2 == -10) return false;
if(z1 == z2) return false;
if(z1 == -5) return true;
if(z2 == -5) return false;
return false;
}
char buff[35000];
int main() {
while(gets(buff) && !feof(stdin)) {
string b(buff);
// since op is positive, we use
// - negative integer to represent operator,
// - positive integer to represent operand
// so we define
// ** = ^ = -10
// * = -5
// + = -1
// - = -2
dequenumber;
dequeop;
int pos = 0;
for(int i = 0; i < b.size(); ++i) {
if(b[i]>='0' && b[i]<='9') continue;
// append previous numbers
number.push_back(BigInt(b.substr(pos, i-pos).c_str()));
int v;
// power has highest priority
if(b[i]=='*' && b[i+1] == '*') {
v = -10;
++i;
} else {
if(b[i] == '*') v = -5;
else if(b[i] == '+') v = -1;
else if(b[i] == '-') v = -2;
if(!op.empty() && !precedence(v, op.back())) {
number.push_back(BigInt(op.back()));
op.pop_back();
}
}
op.push_back(v);
pos = i + 1;
}
// append the last number
number.push_back(BigInt(b.substr(pos).c_str()));
while(!op.empty()) {
number.push_back(BigInt(op.back()));
op.pop_back();
}
/*
dequetmp(number);
while(!tmp.empty()){
cout << tmp.front()<< " ";
tmp.pop_front();
}
printf("\n");*/
// parse into reverse polish format
stackcalc;
while(!number.empty()) {
BigInt t = number.front();
number.pop_front();
// t is an operator
if( t < 0) {
BigInt right = calc.top(); calc.pop();
BigInt left = calc.top(); calc.pop();
BigInt res;
if(t == -1) res = left+right;
else if(t == -2) res = left-right;
else if(t == -5) res = left*right;
else res = left^right;
calc.push(res);
} else {
calc.push(t);
}
}
cout << calc.top()<< endl;
}
return 0;
}